

Water in the Solar System Water on Mars

Major points:

- Mars is about 1.5 times farther from the Sun than Earth
 - Should have formed with greater percentage of water, by volume, than Earth.
 - About 50% less sunlight, so colder than Earth.
- Mars' atmosphere is very thin
 - Pressure comparable to Earth's at about 30km altitude.
 - Liquid water is unstable everywhere on Mars' surface.

Where is the water on Mars?

Atmosphere

Only about 1 precipitable micron of water vapor today.

Polar caps

- Amount of water depends on % of water, dust and CO₂ ice.
- Probably equivalent to between 6m to 30m distributed globally.

Subsurface

- "Megaregolith" may have pore volume equivalent of hundreds of meters distributed globally.
- The above values are uncertain because the history of water on Mars is not well understood.

What about the past climate?

- Was ancient Mars warm or cold? Was it wet or dry?
 - Depends on Perspective
 - Is the Antarctic warm or cold? (there are streams, lakes, and a nearby ocean).
 - Is the Sahara wet or dry? (there are intermittent channels, lakes and a "nearby" ocean)
- Let us define a "warm and wet" planet as one with a climate that will allow liquid water to exist somewhere on the surface either perpetually, seasonally, or perhaps over longer time scales (such as ice ages).

Evidence for water on ancient Mars

Channels

- "Valley networks" river-scale channels in narrow valleys and canyons.
- "Outflow channels" very large "catastrophic flood" channels, similar to dam failures.

Erosion of ancient craters

— Are they simply buried, or were they eroded by rainfall and filled in by sediment?

Northern Lowlands

— Was there an ocean in the northern plains?

Valley Networks and Outflow Channels

- Observations
 - Most valley networks show no actual channel on their floors.
 - Led some to suggest waterless processes for their origin.
 - Exceptions suggest flowing water or other fluid.
 - Most channels appear to start in the subsurface.
 - Valley networks "groundwater sapping."
 - Outflow channels Collapse of underground reservoirs.
 - Exceptions suggest rain or snow with surface runoff, or spillover of lakes.

Erosion of Ancient Craters

- Ancient craters show various amounts of degradation and styles.
- Large impact basins may tell us more about the very early Martian climate:
 - Cassini Basin a largely "intact" rim.
 - Not breached by channels, yet there may be some lake sediment in its interior.
 - Ladon Basin degraded, nearly destroyed multi-ringed basin.
 - Valley networks flowed into the basin interior through the rim mountains.
 - One outflow channel flowed into the interior, and another flowed out the other side.
 - Argyre Basin very degraded, rugged rim deeply eroded by channels.
 - Very long valley networks cut through rim.
 - Layered sediments in interior may be lake sediments.
 - Outflow channel flowed out of basin, possibly carrying sediment out of basin.

Northern Lowlands

- The margins of the northern plains show subtle features similar to ancient lake shorelines on Earth.
 - arcuate ridges, similar in shape to beaches
 - terraces, similar to wave-eroded seacliffs
 - mountains with flat-topped "aprons" around them, similar to wave-eroded islands